Aim: Getting started with statistical approaches and bioinformatics tools commonly used to analyze microarray experiments and to select genes according to their expression profiles.
This practical is divided in 3 sections:
The first microarray datasets were collected from the publication of Guida et al.2011.
The authors used high throughput technologies (microarrays and high throughput sequencing) to determine the transcriptional profile of the pathogenic yeast Candida parapsilosis growing in several conditions including media, temperature and oxygen concentrations.
We will use the datasets related to the study of the hypoxic (low oxygen) response in C. parapsilosis.
The experiments were performed comparing one cell culture incubated at atmospheric oxygen conditions (call normoxic and labelled using Cy3 dye) and another one incubated in 1% O~2 (call hypoxic and labelled using Cy5 dye).
Input : A GPR file with detailed information for each spot on the slide (gene name, Cy5 and Cy3 intensity values, background intensities and other statistics).
library(marray)
The R package Marray offers several functions to : * Read GPR files * Draw graphical representations of microarray results (foreground and background signals, missing values, MAplots, etc.) * Perform the normalization between Cy5 and Cy3 signals.
# Read the GPR file using the marray package function read.GenePix
rawdata <- read.GenePix(fnames="dataFile1_normAnalysis.gpr",
path= "/shared/projects/ens_hts_2021/data/microarrays/data")
## Reading ... /shared/projects/ens_hts_2021/data/microarrays/data/dataFile1_normAnalysis.gpr
Note : This function reads a GPR file and creates objects of class “marrayRaw”. In these objects, you can find, for instance, vectors with intensity values (“rawdata@maRf” or “rawdata@maGf”). These vectors can be manipulated using classical R functions like “summary()”, “hist()”, etc.
Take a few minutes to better understand the structure of the R object “marrayRaw”. Start for instance to manipulate the vectors with foreground signals (“rawdata@maRf” or “rawdata@maGf”).
# f is for foreground
# Intensity values in red/hypoxic channel
head(rawdata@maRf)
## /shared/projects/ens_hts_2021/data/microarrays/data/dataFile1_normAnalysis.gpr
## [1,] 992
## [2,] 1907
## [3,] 559
## [4,] 645
## [5,] 32939
## [6,] 681
# Intensity values in green/normoxic channel
head(rawdata@maGf)
## /shared/projects/ens_hts_2021/data/microarrays/data/dataFile1_normAnalysis.gpr
## [1,] 2561
## [2,] 2585
## [3,] 1588
## [4,] 1604
## [5,] 43755
## [6,] 1732
Visualization of foreground signal
# Red/hypoxic signals
image(rawdata,
xvar = "maRf",
main = "Hypoxic signal (with flags)")
## [1] FALSE
## NULL
# Green/normoxic signals
image(rawdata,
xvar = "maGf",
main = "Normoxic signal (with flags)")
## [1] FALSE
## NULL
Visualize background signals in Red/Hypoxic and Green/Normoxic channels. Try to interpret the obtained results. How is the quality of the experiment?
# b is for background
# Red/Hypoxic channel background signals
image(rawdata,
xvar = "maRb",
main = "Hypoxic background (with flags)")
## [1] FALSE
## NULL
# Green/Normoxic channel background signals
image(rawdata,
xvar = "maGb",
main = "Normoxic background (with flags)")
## [1] FALSE
## NULL
Each spot is automatically associated with a flag value reporting some quality information
Flag values :
Display distribution of spots by flag values
# Spots with certain values will be eliminated from further analysis
table(rawdata@maW)
##
## -100 -75 -50 0
## 103 192 5922 9335
Flag location on the slide
# We take 5 colors in the default palette (thanks to Quentin Lamy for this trick)
MyColor <- palette()[1:5]
MyColor[5] = "white"
image(rawdata,
xvar = "maW",
col = MyColor,
zlim = c(min(rawdata@maW), max(rawdata@maW)),
main = "Location of flags on the slide")
## [1] FALSE
## NULL
Remove background intensity value for flagged spots, by replacing current values by NA
# We work on a copy of the rawdata
rawdataWithoutFlags <- rawdata
rawdataWithoutFlags@maRb[rawdataWithoutFlags@maW < 0] = NA
rawdataWithoutFlags@maGb[rawdataWithoutFlags@maW < 0] = NA
Visualization of background signals without flags
image(rawdata,
xvar = "maRb",
main = "Hypoxic background (with flags)",
colorinfo =F)
## [1] FALSE
## NULL
image(rawdataWithoutFlags,
xvar = "maRb",
main = "Hypoxic background (without flag)",
colorinfo =F)
## [1] FALSE
## NULL
Comparison of the red/hypoxic background signal with and without flagged spots
image(rawdata,
xvar = "maGb",
main = "Normoxic background (with flags)",
colorinfo =F)
## [1] FALSE
## NULL
image(rawdataWithoutFlags,
xvar = "maGb",
main = "Normoxic background (without flag)",
colorinfo =F)
## [1] FALSE
## NULL
Comparison of the green/normoxic background signal with and without flagged spots
We will now correct for experimental biases. To do so, it is important to exclude all the spots for which the Flag values are negative. For that, intensity values in foreground and background signals have to be replaced with the R symbol “NA” (missing values, “Not Available”).
Negatively flagged spots will be eliminated from further analyses by replacing their intensity values by NA (missing values)
#Signal value to NA
rawdataWithoutFlags@maRf[rawdataWithoutFlags@maW < 0] = NA
rawdataWithoutFlags@maGf[rawdataWithoutFlags@maW < 0] = NA
An intuitive approach for background correction consists in subtracting background intensity values (“rawdata@maRb” and “rawdata@maGb”) from global foreground intensities (“rawdata@maRf” and “rawdata@maGf”). Nevertheless this method can be debatable mainly because it creates overestimated log(Ratio) values in case of low intensities and add more noise to the data than expected. For this reason the following analyses will be performed with no background subtraction.
#Replace all background by 0
rawdataWithoutFlags@maGb[] = 0
rawdataWithoutFlags@maRb[] = 0
plot(rawdataWithoutFlags,legend.func = NULL, main = "MA plot before normalization")
plot(rawdataWithoutFlags, main = "MA plot before normalization")
boxplot(rawdataWithoutFlags, main = "Boxplot before normalization")
At this stage you can compare MA plot and boxplot of data with background subtraction if you want to visualize the direct impact of background subtration on data distribution.
rawdataWithoutFlagsNorm <- maNorm(rawdataWithoutFlags, norm = "median", echo = T)
## Normalization method: median.
## Normalizing array 1.
rawdataWithoutFlagsNorm2 <- maNorm(rawdataWithoutFlags, norm = "loess", echo = T)
## Normalization method: loess.
## Normalizing array 1.
rawdataWithoutFlagsNorm3 <- maNorm(rawdataWithoutFlags, norm = "printTipLoess", echo = T)
## Normalization method: printTipLoess.
## Normalizing array 1.
Several plots allow for comparison of the normalization methods
plot(rawdataWithoutFlagsNorm, legend.func = NULL, main = "norm = Median")
plot(rawdataWithoutFlagsNorm2, legend.func = NULL, main = "norm = Loess")
plot(rawdataWithoutFlagsNorm3, legend.func = NULL, main = "norm = printTipLoess")
boxplot(rawdataWithoutFlagsNorm, main = "norm = Median")
boxplot(rawdataWithoutFlagsNorm2, main = "norm = Loess")
boxplot(rawdataWithoutFlagsNorm3, main = "norm = printTipLoess")
plot(density(maM(rawdataWithoutFlagsNorm2),na.rm = T),
lwd = 2, col = 2, main = "Distribution of log(Ratio)")
lines(density(maM(rawdataWithoutFlags), na.rm = T), lwd = 2)
abline(v = 0)
legend(x= 0.5, y= 1.2,c("Before normalization","After normalization with loess"), fill = c(1,2))
In their article (Guida et al., 2011), the authors repeated the experiment 4 times for normoxic condition (with O~2 ) and 4 times for hypoxic conditions (without O~2 ). Expressions of genes between the two conditions were compared using microarrays (Ratio = hypoxia / normoxia).
We will perform the DE analysis using the limma package
library(limma)
Input: A text file with four different biological replicates (after normalization).
dataFile <- "/shared/projects/ens_hts_2021/data/microarrays/data/dataFile_diffAnalysis.txt"
data <- as.matrix(read.table(dataFile, row.names = 1, header = T))
# Retrieve some information from the data table
dim(data)
## [1] 5526 4
data[1:10,1:4]
## logVal1 logVal2 logVal3 logVal4
## CPAR2_201050 -0.265265616 -0.130465012 0.008997103 -0.06624613
## CPAR2_101960 -0.843512598 -0.608422137 -0.103000282 -0.45358870
## CPAR2_101290 0.056414092 0.000296908 -0.068354697 0.05983511
## CPAR2_405520 0.464588136 0.509999239 0.284349940 0.44530769
## CPAR2_201590 -0.230207648 -0.176294382 -0.265324830 -0.24833664
## CPAR2_103750 -0.194992750 -0.186335163 0.191242260 -0.57185971
## CPAR2_100170 -0.132982234 -0.191465175 -0.126354218 0.00331530
## CPAR2_202790 0.973402061 0.853915233 0.808972712 0.74969076
## CPAR2_301860 -0.008917937 0.018171339 -0.021780941 0.16899955
## CPAR2_106430 -1.598703129 -1.508676852 -0.642865880 -0.87494246
summary(data)
## logVal1 logVal2 logVal3 logVal4
## Min. :-3.20789 Min. :-2.902426 Min. :-3.634918 Min. :-3.854502
## 1st Qu.:-0.33699 1st Qu.:-0.318338 1st Qu.:-0.252692 1st Qu.:-0.278030
## Median :-0.01331 Median :-0.002482 Median : 0.002798 Median :-0.009852
## Mean : 0.02278 Mean : 0.025141 Mean : 0.075240 Mean : 0.014181
## 3rd Qu.: 0.30528 3rd Qu.: 0.309444 3rd Qu.: 0.322220 3rd Qu.: 0.282426
## Max. : 6.65491 Max. : 6.422750 Max. : 6.559013 Max. : 6.213929
# Linear model estimation
fit <- lmFit(data)
# Bayesian statistics
limma.res <- eBayes(fit)
# Overview of the most differentially expressed genes
head(topTable(limma.res))
## logFC AveExpr t P.Value adj.P.Val B
## CPAR2_404850 6.462651 6.462651 71.45643 3.788865e-10 2.093727e-06 13.59386
## CPAR2_503990 5.168192 5.168192 61.93992 9.047930e-10 2.499943e-06 13.02649
## CPAR2_502580 3.504953 3.504953 50.62005 3.091002e-09 4.333583e-06 12.10863
## CPAR2_807620 3.614666 3.614666 50.49767 3.136868e-09 4.333583e-06 12.09684
## CPAR2_401230 3.328905 3.328905 45.27100 6.097772e-09 5.982882e-06 11.54690
## CPAG_00607 3.396506 3.396506 43.79661 7.457963e-09 5.982882e-06 11.37366
allgenes.limma <- topTable(limma.res, number = nrow(data)) # Retrieve result table for all genes
siggenes.limma <- allgenes.limma[allgenes.limma[,5] < 0.01,] # Filter on the adj.P.Val
paste(dim(siggenes.limma[siggenes.limma[,2] > 0,])[1], "upregulated genes (logFC value > 0)")
## [1] "942 upregulated genes (logFC value > 0)"
paste(dim(siggenes.limma[siggenes.limma[,2] < 0,])[1], "downpregulated genes (logFC value < 0)")
## [1] "725 downpregulated genes (logFC value < 0)"
# Export DE gene table into your home directory:
write.table(siggenes.limma[siggenes.limma[,2] > 0,],
row.names = T, quote = F, sep = ";",
file = "~/limma_up_signif_genes.csv")
write.table(siggenes.limma[siggenes.limma[,2] < 0,],
row.names = T, quote = F, sep = ";",
file = "~/limma_low_signif_genes.csv")
Volcano plot
attach(allgenes.limma)
logFCthreshold <- 1
adjPVthreshold <- 0.005
volcanoplot(limma.res, main = "Hypoxic VS normoxic ",pch =21)
abline(v = c(-logFCthreshold,logFCthreshold), col = "red")
abline(h = -log10(adjPVthreshold), col= "red", lty =2)
points(siggenes.limma$logFC[logFC > logFCthreshold & adj.P.Val < adjPVthreshold], -1 * log10(siggenes.limma$P.Value[logFC > logFCthreshold & adj.P.Val < adjPVthreshold]), col ="red")
points(siggenes.limma$logFC[logFC <(-logFCthreshold) & adj.P.Val < adjPVthreshold], -1 * log10(siggenes.limma$P.Value[logFC <(-logFCthreshold) & adj.P.Val < adjPVthreshold]), col ="green")
#legend("topleft", c("Genes with LogFC > 1 in hypoxic VS normoxic", "Genes with LogFc > 1 in normoxic VS hypoxic"),pch = 21, col = c("green", "red"), bty ="n", cex =.9)
Several tools are available online to evaluate the biological relevance of the gene sets you select after the differential analysis. For example you can you use the [GoTermFinder tool] (http://www.candidagenome.org/cgi-bin/GO/goTermFinder) dedicated to Candida yeast species to retrieve functional annotation. You can also obtain information on a specific gene using the Candida Genome Database.
#Date
format(Sys.time(), "%d %B, %Y, %H,%M")
## [1] "20 August, 2021, 12,17"
#Packages used
sessionInfo()
## R version 4.0.3 (2020-10-10)
## Platform: x86_64-conda-linux-gnu (64-bit)
## Running under: CentOS Linux 7 (Core)
##
## Matrix products: default
## BLAS/LAPACK: /shared/ifbstor1/software/miniconda/envs/r-4.0.3/lib/libopenblasp-r0.3.10.so
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] marray_1.68.0 limma_3.46.0
##
## loaded via a namespace (and not attached):
## [1] digest_0.6.27 R6_2.5.0 jsonlite_1.7.2 magrittr_2.0.1
## [5] evaluate_0.14 highr_0.9 rlang_0.4.11 stringi_1.6.2
## [9] jquerylib_0.1.4 bslib_0.2.5.1 rmarkdown_2.8 tools_4.0.3
## [13] stringr_1.4.0 xfun_0.23 yaml_2.2.1 compiler_4.0.3
## [17] htmltools_0.5.1.1 knitr_1.33 sass_0.4.0